Tuck's incompressibility function: statistics for zeta zeros and eigenvalues

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple Zeros of the Riemann Zeta-function

Assuming the Riemann Hypothesis, Montgomery and Taylor showed that at least 67.25% of the zeros of the Riemann zeta-function are simple. Using Montgomery and Taylor's argument together with an elementary combinatorial argument, we prove that assuming the Riemann Hypothesis at least 67.275% of the zeros are simple.

متن کامل

Hamiltonian for the Zeros of the Riemann Zeta Function.

A Hamiltonian operator H[over ^] is constructed with the property that if the eigenfunctions obey a suitable boundary condition, then the associated eigenvalues correspond to the nontrivial zeros of the Riemann zeta function. The classical limit of H[over ^] is 2xp, which is consistent with the Berry-Keating conjecture. While H[over ^] is not Hermitian in the conventional sense, iH[over ^] is P...

متن کامل

Strong Szegő asymptotics and zeros of the zeta function

Assuming the Riemann hypothesis, we prove the weak convergence of linear statistics of the zeros of L-functions to a Gaussian field, with covariance structure corresponding to the Hnorm of the test functions. For this purpose, we obtain an approximate form of the explicit formula, relying on Selberg’s smoothed expression for ζ′/ζ and the Helffer-Sjöstrand functional calculus. Our main result is...

متن کامل

Landau-siegel Zeros and Zeros of the Derivative of the Riemann Zeta Function

We show that if the derivative of the Riemann zeta function has sufficiently many zeros close to the critical line, then the zeta function has many closely spaced zeros. This gives a condition on the zeros of the derivative of the zeta function which implies a lower bound of the class numbers of imaginary quadratic fields.

متن کامل

On the Multiplicity of Zeros of the Zeta-function

A b s t r a c t. Several results are obtained concerning multiplicities of zeros of the Riemann zeta-function ζ(s). They include upper bounds for multiplicities, showing that zeros with large multiplicities have to lie to the left of the line σ = 1. A zero-density counting function involving multiplicities is also discussed. AMS Subject Classification (1991): 11M06

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2008

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8113/41/38/385202